The European carbon cycle response to heat and drought as seen from atmospheric CO2 data for 1999-2018

Philos Trans R Soc Lond B Biol Sci. 2020 Oct 26;375(1810):20190506. doi: 10.1098/rstb.2019.0506. Epub 2020 Sep 7.

Abstract

In 2018, central and northern parts of Europe experienced heat and drought conditions over many months from spring to autumn, strongly affecting both natural ecosystems and crops. Besides their impact on nature and society, events like this can be used to study the impact of climate variations on the terrestrial carbon cycle, which is an important determinant of the future climate trajectory. Here, variations in the regional net ecosystem exchange (NEE) of CO2 between terrestrial ecosystems and the atmosphere were quantified from measurements of atmospheric CO2 mole fractions. Over Europe, several observational records have been maintained since at least 1999, giving us the opportunity to assess the 2018 anomaly in the context of at least two decades of variations, including the strong climate anomaly in 2003. In addition to an atmospheric inversion with temporally explicitly estimated anomalies, we use an inversion based on empirical statistical relations between anomalies in the local NEE and anomalies in local climate conditions. For our analysis period 1999-2018, we find that higher-than-usual NEE in hot and dry summers may tend to arise in Central Europe from enhanced ecosystem respiration due to the elevated temperatures, and in Southern Europe from reduced photosynthesis due to the reduced water availability. Despite concerns in the literature, the level of agreement between regression-based NEE anomalies and temporally explicitly estimated anomalies indicates that the atmospheric CO2 measurements from the relatively dense European station network do provide information about the year-to-year variations of Europe's carbon sources and sinks, at least in summer. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.

Keywords: atmospheric inversion; drought; interannual variability; net ecosystem exchange.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Atmosphere
  • Carbon Cycle*
  • Carbon Dioxide / analysis*
  • Climate Change*
  • Droughts*
  • Ecosystem
  • Europe
  • Hot Temperature*
  • Seasons

Substances

  • Carbon Dioxide