Interactions between dipfluzine-based complexes and cytochrome P450 enzymes: Information on salt, cocrystal, and salt cocrystal complexes

Environ Toxicol Pharmacol. 2020 Nov:80:103487. doi: 10.1016/j.etap.2020.103487. Epub 2020 Sep 1.

Abstract

In the new drugs, greater than 90 % of active pharmaceutical ingredients (APIs) or marketed drugs have poor solubility and bioavailability, which restrict the development of pharmaceutical preparations. The use of crystalline molecular complexes (CMCs) involving API and biocompatible precursors to improve solubility has become a shortcut for new drug development. Most of the new drugs registered in CMC form are from postmarketing drugs, and the interaction between these drugs and cytochrome P-450 (CYP) enzymes is well documented. However, it is unclear whether the interactions between CMCs of postmarketing drugs and CYP enzymes should be re-evaluated. To clarify this problem, three dipfluzine (Dip)-based CMCs, including Dip-benzoic acid (BA) cocrystal, Dip-2-hydroxybenzoate (2HB) salt and Dip-4-hydroxybenzoate (4HB) salt-cocrystal, were chosen to investigate the interaction with CYP enzymes. Metabolites of Dip-based CMCs and cocktail probe drugs were measured via LC-MS/MS in the incubation reaction system comprising recombinant CYP enzymes (rCYPs) and human liver microsomes. Dip-based CMCs not only alter Dip-mediated inhibition or activation of CYP enzymes but also change the degree to which rCYPs are involved in Dip metabolism. Specifically, the inhibitory effects of Dip and Dip-HCl were increased compared with Dip-BA and Dip-2HB for CYP1A2; Dip-BA, Dip-2HB and Dip-4HB for CYP3A4; and Dip-BA for CYP2E1. The inhibitory effects of Dip and Dip-HCl were reduced compared with Dip-2HB and Dip-4HB for CYP2C19 and Dip-4HB for CYP2E1. The effects of the alterations of Dip CMCs on the interaction between Dip and CYP enzymes are not attributed to a simple superposition of Dip and the respective precursor and may be due to the presence of interaction forces between Dip and precursor molecules. These results are the first to provide preliminary experimental evidence that CMCs change the interaction between API and CYP enzymes. Moreover, these results further suggest the importance of re-evaluating interactions with CYP enzymes when CMC strategies are used to design new drugs and even for CMCs of postmarketing drugs with known metabolic characteristics.

Keywords: Crystalline molecular complexes; Cytochrome P450 enzymes; Dipfluzine; Drug-drug interaction; Metabolism.

MeSH terms

  • Cinnarizine / analogs & derivatives*
  • Cinnarizine / metabolism
  • Crystallization
  • Cytochrome P-450 Enzyme System / metabolism*
  • Humans
  • Microsomes, Liver / metabolism
  • Salts

Substances

  • Salts
  • Cinnarizine
  • dipfluzine
  • Cytochrome P-450 Enzyme System