Taxonomic dependency of beta diversity components in benthic communities of bacteria, diatoms and chironomids along a water-depth gradient

Sci Total Environ. 2020 Nov 1:741:140462. doi: 10.1016/j.scitotenv.2020.140462. Epub 2020 Jun 24.

Abstract

Community variation (i.e., beta diversity) along geographical gradients is a well-known ecological pattern, but the corresponding variation in beta diversity components (e.g., species turnover and nestedness) and underlying drivers remain poorly understood. Based on two alternative approaches (that is, the beta diversity partitioning proposed by Baselga and the Local Contributions to Beta Diversity (LCBD) partitioning proposed by Legendre), we examined the patterns of beta diversity components of lacustrine benthos, from bacteria to diatoms and chironomids, in the surface sediments along a 100-m water-depth gradient in Lugu Lake. We further quantified the relative importance of spatial, environmental and biotic variables in explaining water-depth patterns in beta diversity. Based on the Baselga's framework, there was a taxonomic dependency for the patterns of beta diversity components with water-depth, showing a significant species turnover pattern for bacteria, while diatoms and chironomids showed significant nestedness. This dependency was also evident in the patterns of community uniqueness with water-depth because based on Legendre's framework, the LCBD decreased with water depth for bacteria whereas increased with depth for diatoms. The total beta diversity and species turnover of bacteria could be explained by the pure effects of spatial, environmental and biotic variables. A total of 26.8% and 23.6% of the nestedness component of diatoms and chironomids was explained by environmental variables, respectively, while species turnover was mostly related to spatial variables. Bacteria total LCBD and species replacement were driven only by environmental variables. For diatoms and chironomids, however, most of the total LCBD and its two components were explained by spatial variables, and biotic variables were most important for the diatom replacement component. Our findings provide insights into the mechanisms responsible for community organizations along water-depth gradients from the perspective of beta diversity components.

Keywords: Bacteria; Beta diversity partitioning; Chironomids; Diatoms; Local contributions to beta diversity; Water depth.

MeSH terms

  • Animals
  • Bacteria
  • Biodiversity
  • Chironomidae*
  • Diatoms*
  • Water

Substances

  • Water