Iron Absorption is Greater from Apo-Lactoferrin and is Similar Between Holo-Lactoferrin and Ferrous Sulfate: Stable Iron Isotope Studies in Kenyan Infants

J Nutr. 2020 Dec 10;150(12):3200-3207. doi: 10.1093/jn/nxaa226.

Abstract

Background: Whether lactoferrin (Lf) binds iron to facilitate its absorption or to sequester iron from potential enteropathogens remains uncertain. Bovine Lf is added to many infant formulas, but previous studies in infants reported that Lf had no effect on or inhibited iron absorption. The effects of the apo (iron-free) or the holo (iron-loaded) forms of Lf on iron absorption are unclear.

Objectives: Our objective was to compare iron absorption from a maize-based porridge containing: 1) labeled ferrous sulfate (FeSO4) alone; 2) labeled FeSO4 given with bovine apo-Lf; and 3) intrinsically labeled bovine holo-Lf.

Methods: In a crossover study, we measured iron absorption in Kenyan infants (n = 25; mean ± SD age 4.2 ± 0.9 months; mean ± SD hemoglobin 109 ± 11 g/L) from maize-based test meals containing: 1) 1.5 mg of iron as 54Fe-labeled FeSO4; 2) 1.42 mg of iron as 58Fe-labeled FeSO4, given with 1.41 g apo-Lf (containing 0.08 mg iron); and 3) 1.41 g holo-Lf carrying 1.5 mg iron as 57Fe. The iron saturation levels of apo- and holo-Lf were 0.56% and 47.26%, respectively primary outcome was fractional iron absorption (FIA), assessed by erythrocyte incorporation of isotopic labels.

Results: The FIA from the meal containing apo-Lf + FeSO4 (geometric mean, 9.8%; -SD and +SD, 5.4% and 17.5%) was higher than from the meals containing FeSO4 (geometric mean, 6.3%; -SD and +SD, 3.2% and 12.6%; P = 0.002) or holo-Lf (geometric mean, 5.0%; -SD and +SD, 2.8% and 8.9%; P <0.0001). There was no significant difference in FIA when comparing the meals containing holo-Lf versus FeSO4 alone (P = 0.24).

Conclusions: The amount of iron absorbed from holo-Lf was comparable to that of FeSO4, and the addition of apo-Lf to a test meal containing FeSO4 significantly increased (+56%) iron absorption. These findings suggest that Lf facilitates iron absorption in young infants. Because Lf binds iron with high affinity, it could be a safe way to provide iron to infants in low-income countries, where iron fortificants can adversely affect the gut microbiome and cause diarrhea. This study was registered at clinicaltrials.gov as NCT03617575.

Keywords: Kenya; anemia; bovine, lactoferrin; infants; iron absorption; iron deficiency; stable isotopes.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Cross-Over Studies
  • Female
  • Ferrous Compounds / metabolism*
  • Humans
  • Infant
  • Infant Formula
  • Iron / metabolism*
  • Iron Isotopes
  • Kenya
  • Lactoferrin / metabolism*
  • Male
  • Milk, Human / chemistry

Substances

  • Ferrous Compounds
  • Iron Isotopes
  • ferrous sulfate
  • Iron
  • Lactoferrin

Associated data

  • ClinicalTrials.gov/NCT03617575