Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles

ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43408-43421. doi: 10.1021/acsami.0c12042. Epub 2020 Sep 17.

Abstract

Glioblastoma (GBM) is the most common and lethal type of malignant brain tumor in adults. Currently, interventions are lacking, the median overall survival of patients with GBM is less than 15 months, and the postoperative recurrence rate is greater than 60%. We proposed an innovative local chemotherapy involving the construction of gene therapy-based iron oxide nanoparticles (IONPs) as a treatment for patients with glioblastoma after surgery that targeted ferroptosis and apoptosis to address these problems. The porous structure of IONPs with attached carboxyl groups was modified for the codelivery of small interfering RNA (siRNA) targeting glutathione peroxidase 4 (si-GPX4) and cisplatin (Pt) with high drug loading efficiencies. The synthesized folate (FA)/Pt-si-GPX4@IONPs exerted substantial effects on glioblastoma in U87MG and P3#GBM cells, but limited effects on normal human astrocytes (NHAs). During intracellular degradation, IONPs significantly increased iron (Fe2+ and Fe3+) levels, while Pt destroyed nuclear DNA and mitochondrial DNA, leading to apoptosis. Furthermore, IONPs increased H2O2 levels by activating reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). The Fenton reaction between Fe2+, Fe3+, and intracellular H2O2 generated potent reactive oxygen species (ROS) to initiate ferroptosis, while the co-released si-GPX4 inhibited GPX4 expression and synergistically improved the therapeutic efficacy through a mechanism related to ferroptosis. As a result, superior therapeutic effects with low systemic toxicity were achieved both in vitro and in vivo, indicating that our nanoformulations might represent safe and efficient ferroptosis and apoptosis inducers for use in combinatorial glioblastoma therapy.

Keywords: combination chemotherapy; ferroptosis; glioblastoma; iron oxide nanoparticle; nanomedicine.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / surgery
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Cisplatin / chemistry
  • Cisplatin / pharmacology*
  • Drug Screening Assays, Antitumor
  • Female
  • Ferric Compounds / chemistry
  • Glioblastoma / drug therapy*
  • Glioblastoma / metabolism
  • Glioblastoma / surgery
  • Humans
  • Mice
  • Mice, Nude
  • Nanoparticles / chemistry*
  • Neoplasms, Experimental / drug therapy
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Particle Size
  • Phospholipid Hydroperoxide Glutathione Peroxidase / antagonists & inhibitors*
  • Phospholipid Hydroperoxide Glutathione Peroxidase / metabolism
  • Porosity
  • RNA, Small Interfering / chemistry
  • RNA, Small Interfering / pharmacology*
  • Surface Properties

Substances

  • Antineoplastic Agents
  • Ferric Compounds
  • RNA, Small Interfering
  • ferric oxide
  • Phospholipid Hydroperoxide Glutathione Peroxidase
  • Cisplatin