Fast-Versus Slow-Resorbable Calcium Phosphate Bone Substitute Materials-Texture Analysis after 12 Months of Observation

Materials (Basel). 2020 Sep 1;13(17):3854. doi: 10.3390/ma13173854.

Abstract

The development of oral surgery and implantology has led to the need for better and more predictable materials. Various substitute materials are now used for bone regeneration. The replacement of scaffolding material by new bone tissue is the most important condition. This study aimed to evaluate the effects of the resorbability of bone substitute materials during regeneration to the jawbone. The study included 88 patients during the 12-month follow-up. All the patients had undergone oral surgical procedures using two different substitute materials-Cerasorb (high-rate resorbable (β-tricalcium phosphate)) and Endobone (low-rate resorbable (hydroxyapatite)). Texture analysis was performed in intraoral radiographs, in which regions of interest were established for the bone substitute materials and reference bone. Five texture features were calculated, namely the sum average (SumAverg), entropy (Entropy), and three Harr discrete wavelet transform coefficients. This study revealed that all 5 features described the healing process well. Entropy was decreased in both cases with time; however, in Cerasorb cases, the texture feature values were very close to those of the reference bone after 12 months of healing (p < 0.05). The wavelet transform coefficient at scale 6 also showed that longitudinal objects appeared in implantation sites, similar to trabecular bone (p < 0.05) after 12 months of healing. The slow-resorbing material restored the structure of the alveolar crest better in terms of producing large objects similar to the components of a barrel bone image (wavelet coefficients), but required a longer time for reconstruction. The fast-resorbing material showed a texture image with a similar scattering of structures to that of the reference bone (entropy) after 12 months.

Keywords: alveolar crest; augmentation; bone substitute material; intraoral radiograph; texture analysis.