Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices

Nanotechnology. 2020 Nov 13;31(46):46LT01. doi: 10.1088/1361-6528/abae98.

Abstract

Flexible optoelectronic structures are required in a wide range of applications. Large scale modified silicone-embedded n-GaP nanowire arrays of a record 6 µm thin membranes were studied. A homogeneous silicone encapsulation was enabled by G-coating using a heavy-load centrifuge. The synthesized graft-copolymers of polydimethylsiloxane (PDMS) and polystyrene demonstrated two times lower adhesion to Si compared to standard PDMS, allowing 3 square inch area high quality silicone/nanowire membrane mechanical release, preserving the growth Si substrate for a further re-use after chemical cleaning. The 90% transparent single-walled carbon nanotubes electrical contacts to the embedded n-GaP nanowires demonstrated mechanical and electrical stability. The presented methods can be used for the fabrication of large scale flexible inorganic optoelectronic devices.