General Plane-Based Clustering With Distribution Loss

IEEE Trans Neural Netw Learn Syst. 2021 Sep;32(9):3880-3893. doi: 10.1109/TNNLS.2020.3016078. Epub 2021 Aug 31.

Abstract

In this article, we propose a general model for plane-based clustering. The general model reveals the relationship between cluster assignment and cluster updating during clustering implementation, and it contains many existing plane-based clustering methods, e.g., k-plane clustering, proximal plane clustering, twin support vector clustering, and their extensions. Under this general model, one may obtain an appropriate clustering method for a specific purpose. The general model is a procedure corresponding to an optimization problem, which minimizes the total loss of the samples. Thereinto, the loss of a sample derives from both within-cluster and between-cluster information. We discuss the theoretical termination conditions and prove that the general model terminates in a finite number of steps at a local or weak local solution. Furthermore, we propose a distribution loss function that fluctuates with the input data and introduce it into the general model to obtain a plane-based clustering method (DPC). DPC can capture the data distribution precisely because of its statistical characteristics, and its termination that finitely terminates at a weak local solution is given immediately based on the general model. The experimental results show that our DPC outperforms the state-of-the-art plane-based clustering methods on many synthetic and benchmark data sets.