Synthesis and bioactivity evaluation of penta-1,4-diene-3-one oxime ether derivatives

J Pestic Sci. 2019 Nov 20;44(4):242-248. doi: 10.1584/jpestics.D19-041.

Abstract

A series of penta-1,4-diene-3-one oxime ether derivatives were synthesized, and their antiviral and antifungal activities were evaluated. Bioactivity evaluations showed that most target compounds had significant antiviral effects against tobacco mosaic virus (TMV). Among them, (1E,3Z,4E)-1-(4-(benzyloxy)phenyl)-5-(furan-2-yl)penta-1,4-dien-3-one O-(3-fluorobenzyl) oxime (5e) was found to have good curative activity against TMV, with an inhibition rate of 64.6%, which was better than that of ribavirin (45.2%). (1E,3Z,4E)-1-(4-(benzyloxy) phenyl)-5-(furan-2-yl)penta-1,4-dien-3-one O-((6-chloropyridin-3-yl)methyl) oxime (5d) had a remarkable protective effect against TMV, with an inhibitory rate of 66.9%, which was better than that of ribavirin (61.8%). The inhibitory rate of (1E,3Z,4E)-1-(2-(benzyloxy)phenyl)-5-(furan-2-yl)penta-1,4-dien-3-one O-(4-chlorobenzyl) oxime(5m) in inactivation activity against TMV was 87.0%, which was better than that of ribavirin (77.9%). Further molecular docking studies indicated that compound 5m shows strong binding affinities toward the coat protein of tobacco mosaic virus. This result indicates that penta-1,4-diene-3-one oxime ether derivatives can play a significant role in discovering new antiviral agents.

Keywords: biological activity; molecular docking; oxime ether; penta-1,4-diene-3-one.