The critical role of CD4+ T cells in PD-1 blockade against MHC-II-expressing tumors such as classic Hodgkin lymphoma

Blood Adv. 2020 Sep 8;4(17):4069-4082. doi: 10.1182/bloodadvances.2020002098.

Abstract

Classic Hodgkin lymphoma (cHL) responds markedly to PD-1 blockade therapy, and the clinical responses are reportedly dependent on expression of major histocompatibility complex class II (MHC-II). This dependence is different from other solid tumors, in which the MHC class I (MHC-I)/CD8+ T-cell axis plays a critical role. In this study, we investigated the role of the MHC-II/CD4+ T-cell axis in the antitumor effect of PD-1 blockade on cHL. In cHL, MHC-I expression was frequently lost, but MHC-II expression was maintained. CD4+ T cells highly infiltrated the tumor microenvironment of MHC-II-expressing cHL, regardless of MHC-I expression status. Consequently, CD4+ T-cell, but not CD8+ T-cell, infiltration was a good prognostic factor in cHL, and PD-1 blockade showed antitumor efficacy against MHC-II-expressing cHL associated with CD4+ T-cell infiltration. Murine lymphoma and solid tumor models revealed the critical role of antitumor effects mediated by CD4+ T cells: an anti-PD-1 monoclonal antibody exerted antitumor effects on MHC-I-MHC-II+ tumors but not on MHC-I-MHC-II- tumors, in a cytotoxic CD4+ T-cell-dependent manner. Furthermore, LAG-3, which reportedly binds to MHC-II, was highly expressed by tumor-infiltrating CD4+ T cells in MHC-II-expressing tumors. Therefore, the combination of LAG-3 blockade with PD-1 blockade showed a far stronger antitumor immunity compared with either treatment alone. We propose that PD-1 blockade therapies have antitumor effects on MHC-II-expressing tumors such as cHL that are mediated by cytotoxic CD4+ T cells and that LAG-3 could be a candidate for combination therapy with PD-1 blockade.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes
  • CD8-Positive T-Lymphocytes
  • Histocompatibility Antigens Class II
  • Hodgkin Disease* / drug therapy
  • Mice
  • Programmed Cell Death 1 Receptor
  • Tumor Microenvironment

Substances

  • Histocompatibility Antigens Class II
  • Programmed Cell Death 1 Receptor