Effective discrimination of chiral molecules in a cavity

Opt Lett. 2020 Sep 1;45(17):4952-4955. doi: 10.1364/OL.398859.

Abstract

We present a scheme to realize precise discrimination of chiral molecules in a cavity. Assisted by additional laser pulses, cavity fields can evolve into different coherence states with contrary-sign displacements according to the handedness of molecules. Consequently, the handedness of molecules can be read out with homodyne measurement on the cavity, and the successful probability is nearly unity without very strong cavity fields. Numerical results show that the scheme is insensitive to errors, noise, and decoherence. Therefore, the scheme may provide helpful perspectives for accurate discrimination of chiral molecules.