High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors

Nanoscale. 2020 Sep 17;12(35):18371-18378. doi: 10.1039/d0nr03569f.

Abstract

Herein, two kinds of vertical organic optoelectronic devices, vertical organic field-effect transistors (VOFETs) and light-emitting transistors (VOLETs), were constructed based on amorphous organic semiconductors of N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) as hole injecting and transport layers and tris(8-hydroxy-quinolinato) aluminum (Alq3) as the emitting layer. High device performances with a large on/off ratio of ∼6 × 103, current density of ∼40 mA cm-2, and fast response of ∼5 ms at a frequency of 20 Hz and a brightness of 126 cd m-2 were demonstrated for these two vertical devices with good device stability and repeatability. These results suggest the potential applications of amorphous organic semiconductors with good film-forming characteristics and easy device fabrication ability in vertical optoelectronic circuits.