A Gas-Phase Reaction Accelerator Using Vortex Flows

Anal Chem. 2020 Sep 1;92(17):12049-12054. doi: 10.1021/acs.analchem.0c02672. Epub 2020 Aug 11.

Abstract

Gas-phase microdroplets have been increasingly used for reaction acceleration. Here, we report the development of a vortex tube as a reaction accelerator. Three types of reactions, viz., aromatization, amination isomerization, and acid-induced cytochrome c unfolding were used to characterize the performance of the vortex tube. During ion transfer from a nanoelectrospray ionization (nanoESI) source to the mass spectrometry (MS) inlet, the generated vortex flows helped droplet desolvation and ion confinement and thus improved the MS intensity by 2-3 orders of magnitude compared with that when the vortex tube was not applied. Like the stirring effect in the bulk phase, the reactants were more sufficiently mixed and reacted in vortices. Therefore, with the same reaction distance, a 2-3-fold improvement of conversion ratios was observed by using the vortices. Notably, the vortex tube enabled the use of flow rate to control the reaction time for ∼60 μs, which was useful for precise control of reaction progress. As a demonstration, the intermediates of the amination isomerization were tracked and the equilibrium constant and rate constant of the cytochrome c unfolding were determined.

Publication types

  • Research Support, Non-U.S. Gov't