A multifunctional biodegradable brush polymer-drug conjugate for paclitaxel/gemcitabine co-delivery and tumor imaging

Nanoscale Adv. 2019;1(7):2761-2771. doi: 10.1039/c9na00282k. Epub 2019 May 27.

Abstract

A multifunctional biodegradable brush polymer-drug conjugate (BPDC) is developed for the co-delivery of hydrophobic paclitaxel (PTX) and hydrophilic gemcitabine (GEM) chemotherapeutics, as well as a tumor imaging agent. A novel ternary copolymer of conventional, acetylenyl-functionalized and allyl-functionalized lactides is prepared to serve as the backbone precursor of BPDC. Acetylenyl groups of the copolymer are then reacted with poly(ethylene glycol) (PEG) side chains and cyanine5.5, a fluorescent probe, via azide-alkyne click reactions. Subsequently, the allyl groups of the yielded PEG-grafted brush polymer are used to covalently link PTX and GEM onto the backbone via thiol-ene click reactions. The resulting BPDC exhibits an average hydrodynamic diameter of 111 nm. Sustained and simultaneous release of PTX and GEM from the BPDC is observed in phosphate buffered saline, with the release of PTX showing sensitivity in mild acidic conditions. In vitro studies using MIA PaCa-2 human pancreatic cancer cells illustrate the cellular uptake and cytotoxicity of the BPDC. In vivo, the BPDC possesses long blood circulation, tumor accumulation, and enables optical tumor imaging. Further development and testing is warranted for multifunctional conjugated brush polymer systems that integrate combination chemotherapies and imaging.