Trabecular architecture during the healing process of a tibial diaphysis defect

Acta Biomater. 2021 Jan 15:120:181-193. doi: 10.1016/j.actbio.2020.08.028. Epub 2020 Aug 26.

Abstract

The adaptation of trabecular bone microstructure to mechanical loads has been intensively investigated. However, loading-unrelated aspects of trabecular architecture remain unclear. We used synchrotron radiation-based X-ray microtomography to study the 3D microarchitecture of newly formed trabecular tissue in a defect produced in the cortical region of the rat tibia diaphysis, in the absence (7, 14, and 21 days) or the presence (21 days) of carbonated hydroxyapatite/alginate (cHA) microspheres. This work provides the first evidence that the woven bone trabecular network, formed during the healing process, displays a well-organized 3D microarchitecture consisting of nodes with 3 (3-N), 4 (4-N) and 5 (5-N) connecting trabeculae, with a mean relative abundance of (3-N)/(4-N)/(5-N) = 66/24/7, for the analyzed periods. The measured inter-trabecular angles (ITA) distribution presented a Gaussian profile, with mean value at 115° for 3-N nodes, and 105° for 4-N nodes, close to the angles of idealized 3D regular structures (120° and 109.5°, respectively). Changes in the dispersion of ITA distribution suggested that a highly symmetric trabecular fabric organized under tensegrity principles is formed early during the bone healing process. Post-implantation, cHA disaggregated into multiple fragments (~20-400 μm), stimulating osteoconduction and bone growth toward the interior of the medullary cavity. The presence of biomaterials in bone defects affected the trabecular dimensions; however, it did not interfere with the formation of geometrical motifs with topological parameters similar to those found in the sham-defects. STATEMENT OF SIGNIFICANCE: The trabecular bone microstructure enables the tissue to meet the necessary mechanical and functional demands. However, the process of trabecular microarchitecture formation during healing, in the absence or presence of a bone graft, is not yet well understood. This work demonstrated that, from the beginning of its formation in cortical bone defects, the woven-bone trabecular network is spatially organized according to the principle of tensegrity. This microarchitecture is comprised of highly symmetric geometric motifs and is an intrinsic characteristic of trabecular growth, regardless of hierarchical scale or mechanical stimulation. The addition of a biodegradable nanostructured calcium phosphate graft did not disrupt trabecular microarchitecture; however, graft biodegradation should be controlled to optimize the reproduction of intrinsic trabecular motifs throughout the defect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Density
  • Bone Regeneration
  • Bone and Bones
  • Cortical Bone / diagnostic imaging
  • Diaphyses* / diagnostic imaging
  • Rats
  • Tibia* / diagnostic imaging