Investigation of Microwave Absorption Performance of CoFe2O4/NiFe2O4/Carbon Fiber Composite Coated with Polypyrrole in X-Band Frequency

Micromachines (Basel). 2020 Aug 26;11(9):809. doi: 10.3390/mi11090809.

Abstract

The current research reports the preparation of a microwave absorber containing CoFe2O4/NiFe2O4/Carbon fiber (H/S/CF) coated with polypyrrole polymer (PPy@H/S/CF) through sol-gel and in-situ polymerization processes. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM), and a vector network analyzer (VNA) are utilized to evaluate the features of the prepared composite. The microstructure analysis results revealed carbon fibers well decorated with submicron-size particles having hard/soft magnetic phases and thoroughly coated with polymer. The paraffin-based microwave absorber sample filled with 45 wt.% of PPy@H/S/CF has simultaneously both magnetic and dielectric losses in the 8.2-12.4 GHz frequency range. The absorber is used in a Salisbury screen configuration aiming at reducing the radar cross-section of objects. A minimum reflection loss of -55 dB at 10.6 GHz frequency with 5 GHz bandwidth is obtained for the sample with a 2 mm thickness. Different mechanisms, such as interfacial polarization, ferromagnetic resonance, and electron hopping, are the main factors for achieving such an appropriate microwave absorption. These results suggest that the PPy@H/S/CF composite is an ideal candidate for microwave absorption applications requiring high performance and low thickness.

Keywords: CoFe2O4/NiFe2O4; carbon fiber; electromagnetic properties; microwave absorber; polypyrrole.