iTRAQ-based protein analysis provides insight into heterologous superinfection exclusion with TMV-43A against CMV in tobacco (Nicotiana benthamiana) plants

J Proteomics. 2020 Oct 30:229:103948. doi: 10.1016/j.jprot.2020.103948. Epub 2020 Aug 25.

Abstract

Heterologous superinfection exclusion (HSE) is a phenomenon of an initial virus infection which prevents reinfection by a distantly related or unrelated challenger virus strain in the same host. Here, we demonstrate that a mild strain mutant of Tobacco mosaic virus (TMV-43A) can protect Nicotiana benthamiana plants against infection by a challenger Cucumber mosaic virus (CMV)-Fny strain. The isobaric tags for relative and absolute quantification (iTRAQ) technique was used to investigate proteome of N. benthamiana plant during HSE. Our results indicated that in superinfected plants, the PSI and PSII proteins in the photosynthetic pathway increased in abundance, providing sufficient energy to plants for survival. The fatty acid synthesis-related proteins acetyl-CoA carboxylase 1-like and fatty acid synthase were decreased in abundance, affecting the formation of virus replication complex, which in turn reduced CMV replication and lessen hijacking of basic building blocks of RNA transcription and protein synthesis required for normal host functions. This is the first analyses of host proteins that are correlated to HSE between two unrelated plant viruses TMV-43A and CMV in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: CMV is one of the most studied host-virus interaction models in plants. It infects both monocot and dicot crop plants, causing significant economic losses. Superinfection exclusion (also known as cross protection) is one of the methods to combat virus infection. However, there is lack of proteome information of heterologous superinfection exclusion between two taxonomically unrelated plant viruses (such as between CMV and TMV). An iTRAQ-based quantitative approach was used to study proteomics of superinfection, where TMV-43A acts as a protector of N. benthamiana plants against its challenger CMV. Results showed that TMV-43A protects host plants and prevents plant death from CMV infection. This study provided insights into host responses involving multiple host pathways: photosynthesis, plant defence, carbon metabolism, translation and protein processing, fatty acid metabolism and amino acid biosynthesis. The findings provide a reference database for other viruses and increase our knowledge in host proteins that are correlated to superinfection.

Keywords: Cross protection; Cucumber mosaic virus; Photosynthesis; Quantitative proteomics; Tobacco mosaic virus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cucumovirus*
  • Nicotiana
  • Plant Diseases
  • Superinfection*
  • Tobacco Mosaic Virus*