MR-Conditional Actuations: A Review

Ann Biomed Eng. 2020 Dec;48(12):2707-2733. doi: 10.1007/s10439-020-02597-8. Epub 2020 Aug 27.

Abstract

Magnetic resonance imaging (MRI) is one of the most prevailing technologies to enable noninvasive and radiation-free soft tissue imaging. Operating a robotic device under MRI guidance is an active research area that has the potential to provide efficient and precise surgical therapies. MR-conditional actuators that can safely drive these robotic devices without causing safety hazards or adversely affecting the image quality are crucial for the development of MR-guided robotic devices. This paper aims to summarize recent advances in actuation methods for MR-guided robots and each MR-conditional actuator was reviewed based on its working principles, construction materials, the noteworthy features, and corresponding robotic application systems, if any. Primary characteristics, such as torque, force, accuracy, and signal-to-noise ratio (SNR) variation due to the variance of the actuator, are also covered. This paper concludes with a perspective on the current development and future of MR-conditional actuators.

Keywords: Actuation; Hydraulic; MR-conditional; Magnetic resonance imaging (MRI); Motor; Piezoelectric; Pneumatic.

Publication types

  • Review

MeSH terms

  • Humans
  • Magnetic Resonance Imaging / instrumentation*
  • Robotics / instrumentation*