Chronic effects of muscle and nerve-directed stretching on tissue mechanics

J Appl Physiol (1985). 2020 Nov 1;129(5):1011-1023. doi: 10.1152/japplphysiol.00239.2019. Epub 2020 Aug 27.

Abstract

Tissue-directed stretching interventions can preferentially load muscular or nonmuscular structures such as peripheral nerves. How these tissues adapt mechanically to long-term stretching is poorly understood. This randomized, single-blind, controlled study used ultrasonography and dynamometry to compare the effects of 12-wk nerve-directed and muscle-directed stretching programs versus control on maximal ankle dorsiflexion range of motion (ROM) and passive torque, shear wave velocity (SWV; an index of stiffness), and architecture of triceps surae and sciatic nerve. Sixty healthy adults were randomized to receive nerve-directed stretching, muscle-directed stretching, or no intervention (control). The muscle-directed protocol was designed to primarily stretch the plantar flexor muscle group, whereas the nerve-directed intervention targeted the sciatic nerve tract. Compared with the control group [mean; 95% confidence interval (CI)], muscle-directed intervention showed increased ROM (+7.3°; 95% CI: 4.1-10.5), decreased SWV of triceps surae (varied from -0.8 to -2.3 m/s across muscles), decreased passive torque (-6.8 N·m; 95% CI: -11.9 to -1.7), and greater gastrocnemius medialis fascicle length (+0.4 cm; 95% CI: 0.1-0.8). Muscle-directed intervention did not affect the SWV and size of sciatic nerve. Participants in the nerve-directed group showed a significant increase in ROM (+9.9°; 95% CI: 6.2-13.6) and a significant decrease in sciatic nerve SWV (> -1.8 m/s across nerve regions) compared with the control group. Nerve-directed intervention had no effect on the main outcomes at muscle and joint levels. These findings provide new insights into the long-term mechanical effects of stretching interventions and have relevance to clinical conditions where change in mechanical properties has occurred.NEW & NOTEWORTHY This study demonstrates that the mechanical properties of plantar flexor muscles and sciatic nerve can adapt mechanically to long-term stretching programs. Although interventions targeting muscular or nonmuscular structures are both effective at increasing maximal range of motion, the changes in tissue mechanical properties (stiffness) are specific to the structure being preferentially stretched by each program. We provide the first in vivo evidence that stiffness of peripheral nerves adapts to long-term loading stimuli using appropriate nerve-directed stretching.

Keywords: ankle range of motion; mechanical properties; muscle stretching; sciatic nerve; triceps surae; ultrasound shear wave elastography.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Adult
  • Ankle Joint
  • Biomechanical Phenomena
  • Humans
  • Muscle Stretching Exercises*
  • Muscle, Skeletal*
  • Range of Motion, Articular
  • Single-Blind Method
  • Torque