Elevated Temperature Performance of Reactive Powder Concrete Containing Recycled Fine Aggregates

Materials (Basel). 2020 Aug 24;13(17):3748. doi: 10.3390/ma13173748.

Abstract

This study examines the effect of elevated temperature on various properties of reactive powder concrete (RPC) containing varying percentages of recycled fine aggregates as sand replacement. Recycled fine aggregates were collected from two sources, i.e., demolished normal strength concrete and demolished RPC. The specimens were prepared using 25%, 50%, and 75% replacement of natural sand with recycled fine aggregates, exposed to two different curing conditions and were subjected to four temperatures, i.e., 25, 200, 400, and 600 °C. Later, the specimens were tested for mass loss, compressive strength test, split-tensile strength test, flexural strength test, and water absorption test at all temperature ranges. Results determined that although the mechanical properties degraded with the temperature rise, the recycled aggregates can be employed as a partial replacement of natural sand in RPC without causing a significant decrease in the performance of RPC, and can help to produce more sustainable RPC by using recycled aggregates.

Keywords: C & D waste management; elevated temperature; reactive powder concrete (RPC); recycled aggregate concrete; recycled fine aggregates.