Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management

Sci Total Environ. 2020 Dec 20:749:141493. doi: 10.1016/j.scitotenv.2020.141493. Epub 2020 Aug 4.

Abstract

Massive die-off in salt marshes is one of the most common examples of widespread degradation in marine and coastal ecosystems. In salt marshes, tidal channel networks facilitate the exchange of water, nutrients, sediments and biota with the open marine environments. However, quantitative analyses of the role of channel networks in alleviating vegetation die-off in salt marshes are scarce. Here we quantified the spatial-temporal development of marsh vegetation die-off in the northern Liaodong Bay by analyzing aerial images before, during, and after a drought (from 2014 to 2018). We found that Suaeda salsa marshes have recently experienced large-scale die-off. The extent of vegetation die-off increases with increasing distance from the channel network. Moreover, our results suggested that efficient tidal channel networks (high drainage density, low mean unchanneled path length) can mitigate die-off at the watershed scale. We presented possible abiotic & biotic processes in channel networks that explain this spatial dynamic. Our study highlights the importance of efficient tidal channel networks in mitigating die-off and enhancing the resistance of marshes to droughts, and call for incorporating theses dynamics in coastal restoration and management.

Keywords: Coastal wetlands; Die-off; Drought; Resistance; Suaeda salsa; Tidal channel networks.