Spatial and vertical distribution, composition profiles, sources, and ecological risk assessment of polycyclic aromatic hydrocarbon residues in the sediments of an urban tributary: A case study of the Songgang River, Shenzhen, China

Environ Pollut. 2020 Nov;266(Pt 1):115360. doi: 10.1016/j.envpol.2020.115360. Epub 2020 Aug 14.

Abstract

In this study, the Songgang River (SR) was selected as a typical tributary that is heavily polluted by rapid urbanization and industrialization. The polycyclic aromatic hydrocarbon (PAH) distribution at five representative sampling sites from different urban functional areas was studied. The chemical and physical properties and spatial and vertical distribution of PAHs in sediments were investigated. PAH source identification and the ecological risks of the sediments were evaluated. The results suggested that the industrial zone and dense residential and commercial areas were the most contaminated areas of the SR, as the chemical and physical properties of total organic carbon content in sediments was the highest at the dense residential and commercial areas (0.1-4.5%); however, the acid volatile sulfide, total nitrogen, and total phosphorus contents were the highest in the industrial zone, with ranges of 700.0-1618.4 mg/kg dw, 22.4-3543.9 mg/kg dw, and 82.3-4550.7 mg/kg dw, respectively. The spatial distribution of residual PAHs in the sediment cores showed a wide variation among different urban functional areas, and the vertical characterization (0-300 cm) depicted a significant decreasing trend with depth and with an abrupt increase at 180 cm. The concentration of ∑16 PAHs ranged from 208.7 to 7709.8 ng/g dw, with the highest concentrations obtained in the industrial zone. The low molecular weight-PAHs (153-6720 ng/g dw) were predominant in the sediments. Furthermore, there were combined sources (biomass burning: 40.3%; fossil fuel combustion: 25.5%; mixed source: 21.5%; oil pollution: 12.7%) and a long term accumulation effect, with anthropogenic activities and industrial pollution as the major contributing sources. The concentrations of Nap, Acy, Ace, Flu, and Ant exceeded the lower limit of the sediment quality criteria, and higher toxic equivalent concentration values of the total carcinogenic PAHs were observed nearby the midstream of the SR, which may cause adverse biological effects and implies a need for regular monitoring.

Keywords: Ecological risk assessment; Polycyclic aromatic hydrocarbons; Sediment; Source identification; Spatial and vertical distribution; Urban tributary.

MeSH terms

  • China
  • Environmental Monitoring
  • Geologic Sediments
  • Polycyclic Aromatic Hydrocarbons / analysis*
  • Risk Assessment
  • Water Pollutants, Chemical / analysis*

Substances

  • Polycyclic Aromatic Hydrocarbons
  • Water Pollutants, Chemical