Surface innovation to enhance anti-droplet and hydrophobic behavior of breathable compressed-polyurethane masks

Environ Technol Innov. 2020 Nov:20:101093. doi: 10.1016/j.eti.2020.101093. Epub 2020 Aug 7.

Abstract

With the emergence of the coronavirus disease (COVID-19), it is essential that face masks demonstrating significant anti-droplet and hydrophobic characteristics are developed and distributed. In this study, a commercial compressed-polyurethane (C-PU) mask was modified by applying a hydrophobic and anti-droplet coating using a silica sol, which was formed by the hydrolysis of tetraethoxysilane (TEOS) under alkaline conditions and hydrolyzed hexadecyltrimethoxysilane (HDTMS) to achieve hydrophobization. The modified mask (C-PU/Si/HDTMS) demonstrated good water repellency resulting in high water contact angle (132°) and low sliding angle (17°). Unmodified and modified masks were characterized using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). A drainage test confirmed the strong interaction between the mask surface and coating. Moreover, the coating had negligible effect on the average pore size of the C-PU mask, which retained its high breathability after modification. The application of this coating is a facile approach to impart anti-droplet, hydrophobic, and self-cleaning characteristics to C-PU masks.

Keywords: Anti-droplet; COVID-19; Face mask; Hexadecyltrimethoxysilane; Polyurethane; Silica sol.