Reduced Dose of Beta-Alanine Is Sufficient to Maintain Performance in Repeated Sprints

J Strength Cond Res. 2022 Jun 1;36(6):1636-1642. doi: 10.1519/JSC.0000000000003715. Epub 2020 Aug 21.

Abstract

Zandona, BA, Ramos, RA, de Oliveira, CdS, McAnulty, SR, Ferreira, LHB, Smolarek, AC, Enes, AAN, Urbinati, KMdSS, Aragon, AA, Schoenfeld, BJ, and de Souza Junior, TP. Reduced Dose of Beta-Alanine Is Sufficient to Maintain Performance in Repeated Sprints. J Strength Cond Res 36(6): 1636-1642, 2022-Beta-alanine (BA) supplementation has been shown to be effective in improving physical performance by increasing carnosine concentration. However, it is still necessary to know the effect of a maintenance dose on performance. Thus, this study aimed to investigate the effects of a maintenance dose of BA supplementation on performance. Forty-four anaerobically trained men with 23.9 ± 3.8 years of age, 176.0 ± 0.05 cm height, 81.2 ± 7.5 kg body mass, and 15.5 ± 2.9% of body fat performed a cycle ergometer test consisting of 4 sprints of 30 s with 4 minutes of active recovery. The study comprised 3 phases: (a) presupplementation, (b) supplementation with 6.4 g·d-1 BA or placebo, and (c) postsupplementation with a maintenance dose of 1.2 g·d-1 of BA or interruption of supplementation. Data were analyzed using generalized estimated equations with a priori 0.05 level of significance. The placebo group and interruption group presented a lower power (7.28 ± 0.66 and 7.71 ± 0.42 W·kg-1 vs. 8.04 ± 0.84 and 9.25 ± 1.18 W·kg-1, respectively; p < 0.05) during the third sprint in postsupplementation, whereas the maintenance group maintained the required power (7.47 ± 1.03 vs. 8.74 ± 1.07 W·kg-1; p > 0.05). The placebo group also presented higher percentage of fatigue (44.5% ± 12.3 and 44.8% ± 7.7 vs. 37.6 ± 7.2%; p = 0.021) and higher subjective perception of exertion (8.92 ± 0.90 vs. 8.00 ± 1.60; p = 0.028). Therefore, the maintenance dose of 1.2 g·d-1 BA was effective in maintaining performance, whereas a reduction in performance was observed after supplementation interruption.

MeSH terms

  • Athletic Performance*
  • Carnosine*
  • Dietary Supplements
  • Fatigue
  • Humans
  • Male
  • beta-Alanine / pharmacology

Substances

  • beta-Alanine
  • Carnosine