High-Dose Dabigatran Is an Effective Anticoagulant for Simulated Cardiopulmonary Bypass Using Human Blood

Anesth Analg. 2021 Feb 1;132(2):566-574. doi: 10.1213/ANE.0000000000005089.

Abstract

Background: Currently no ideal alternative exists for heparin for cardiopulmonary bypass (CPB). Dabigatran is a direct thrombin inhibitor for which a reversal agent exists. The primary end point of the study was to explore whether Dabigatran was an effective anticoagulant for 120 minutes of simulated CPB.

Methods: The study was designed in 2 sequential steps. Throughout, human blood from healthy donors was used for each experimental step. Initially, increasing concentrations of Dabigatran were added to aliquots of fresh whole blood, and the anticoagulant effect measured using kaolin/tissue factor-activated thromboelastography (rapidTEG). The dynamics of all thromboelastography (TEG) measurements were studied with repeated measures analysis of variance (ANOVA). Based on these data, aliquots of blood were treated with high-concentration Dabigatran and placed in a Chandler loop as a simple ex vivo bypass model to assess whether Dabigatran had sufficient anticoagulant effects to maintain blood fluidity for 2 hours of continuous contact with the artificial surface of the PVC tubing. Idarucizumab, humanized monoclonal antibody fragment, was used to verify the reversibility of Dabigatran effects. Finally, 3 doses of Dabigatran were tested in a simulated CPB setup using a heart-lung machine and a commercially available bypass circuit with an arteriovenous (A-V) loop. The primary outcome was the successful completion of 120 minutes of simulated CPB with dabigatran anticoagulation, defined as lack of visible thrombus. Thromboelastographic reaction (R) time was measured repeatedly in each bypass simulation, and the circuits were continuously observed for clot. Scanning Electron Microscopy (SEM) was used to visualize fibrin formation in the filters meshes during CPB.

Results: In in vitro blood samples, Dabigatran prolonged R time and reduced the dynamics of clot propagation (as measured by speed of clot formation [Angle], maximum rate of thrombus generation [MRTG], and time to maximum rate of thrombus generation [TMRTG]) in a dose-dependent manner. In the Chandler Loop, high doses of Dabigatran prevented clot formation for 120 minutes, but only at doses higher than expected. Idarucizumab decreased R time and reversed anticoagulation in both in vitro and Chandler Loops settings. In the A-V loop bypass simulation, Dabigatran prevented gross thrombus generation for 120 minutes of simulated CPB.

Conclusions: Using sequential experimental approaches, we showed that direct thrombin inhibitor Dabigatran in high doses maintained anticoagulation of blood for simulated CPB. Idarucizumab reduced time for clot formation reversing the anticoagulation action of Dabigatran.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Antithrombins / pharmacology*
  • Blood Coagulation / drug effects*
  • Cardiopulmonary Bypass / adverse effects*
  • Dabigatran / pharmacology*
  • Dose-Response Relationship, Drug
  • Humans
  • Middle Aged
  • Proof of Concept Study
  • Thrombelastography
  • Thrombosis / blood
  • Thrombosis / etiology
  • Thrombosis / prevention & control*
  • Time Factors
  • Young Adult

Substances

  • Antithrombins
  • Dabigatran