A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control

Lab Chip. 2020 Nov 24;20(23):4433-4441. doi: 10.1039/d0lc00501k.

Abstract

A microfluidic circuit on a disk platform, also known as lab-on-a-disk, is an integrated system for automated high-throughput screening for biochemical analysis. The microfluidic circuit on a disk performs biochemical analysis through sequential processes such as filtration, separation, detection, and synthesis of reagents. Sequential processes in microfluidic circuits operate through the systematically linked components, which include channels, valves, and chambers. The microchannels should have micrometer-scale for precise micro-volume liquid control in the microfluidic circuit on a disk. However, it is difficult to also consider productivity in the traditional technology. In addition, as the channel length increases, much effort is required to construct the components of the microfluidic circuit in the limited space of the disk. 3D printing is drawing attention as a microfluidic channel fabrication technique in order to overcome the physical limitations of the traditional methods. A new concept of a 3D slope valve has been developed, which performs precise and sequential micro-volume liquid control through centrifugal and gravitational forces. Micro-volumes of liquids in a slope valve-equipped circuit are controlled over a wide range of angular velocities through the control of the valve geometry, types of liquid and volume. For sequential micro-volume of liquid control, three lines of assembled modules are connected to a microfluidic circuit. In the microfluidic circuit with slope valves, the detection of fluorescent dye tagged-VEGF is possible through sequential mixing and reaction processes. As a result, micro-volume liquid is successfully controlled with high accuracy using the 3D microfluidic circuit with a slope valve.

Publication types

  • Research Support, Non-U.S. Gov't