C9 Petroleum Resin Hydrogenation over a PEG1000-Modified Nickel Catalyst Supported on a Recyclable Fluid Catalytic Cracking Catalyst Residue

ACS Omega. 2020 Aug 6;5(32):20291-20298. doi: 10.1021/acsomega.0c02193. eCollection 2020 Aug 18.

Abstract

A PEG1000-modified nickel-based catalyst (Ni-PEG1000/FC3R) supported on an activated fluid catalytic cracking catalyst residue (FC3R) was synthesized and applied to C9 petroleum resin (C9PR) hydrogenation. The results of the Brunauer-Emmett-Teller method, X-ray diffraction, H2 temperature-programmed reduction, and scanning electron microscopy-energy-dispersive X-ray spectroscopy show that the Ni-PEG1000/FC3R catalyst had a smaller crystallite size and higher Ni dispersion than those of a Ni/FC3R catalyst. The prepared Ni-PEG1000/FC3R catalyst was applied in a hydrogenation of C9PR at 270 °C and 6 MPa H2 pressure for 3 h. Under these conditions, the bromine value of C9PR was decreased from 46.1 g Br/100 g (Gardner color grade no. 11) to 0.72 g Br/100 g (Gardner color grade no. 1), and the sulfur content was reduced from 25.7 to 1.66 mg kg-1. Experimental results show that the Ni-PEG1000/FC3R catalyst exhibited high activity and stability for C9PR hydrogenation.