Effects of Laetiporus sulphureus-Fermented Wheat Bran on Growth Performance, Intestinal Microbiota and Digesta Characteristics in Broiler Chickens

Animals (Basel). 2020 Aug 20;10(9):1457. doi: 10.3390/ani10091457.

Abstract

This study investigated the effects of a Laetiporus sulphureus-fermented wheat bran (LS) supplementation on the microbiota and digesta characteristics of broiler chickens. Two hundred and forty male broilers (Ross 308) were randomly allocated into three groups fed with a corn-soybean-based diet (control), and the control diet being replaced with 5% wheat bran (WB) and 5% LS, respectively. Each group had four replicates and 20 birds per pen. Metagenomics analysis results of the ileum microbiota showed that, at the family level, the 5% LS groups had over 40% higher Lactobacillaceae compared to the control group in a mean difference comparison. Heat maps showed that, at the phylum level, the population of Firmicutes was higher and Proteobacteria was lower in the ileum of 5% LS compared to the control group. Results of the stack column plots of the top ten OTUs at the family level showed that a 5% LS and 5% WB supplementation altered the broiler microbiota distribution by increasing the relative abundance of Lactobacillaceae. Cecal microbiota analysis showed that the 5% LS-supplemented group had approximately 5% and 3% higher Veillonellaceae and Lactobacillaceae, respectively. Stack column plots of the top ten OTUs indicated that the distribution of cecal bacteria in each group was not markedly different. Both the ileum and cecum digesta in the 5% LS supplementation group had a slight and not significant elevation on the total VFA, while the pH values and ammonia nitrogen were significantly lowered compared to the control and 5% WB groups (p < 0.05). In addition, the 5% LS supplementation group had a significantly higher lactic acid concentration in both the ileum and cecum compared to the control and 5% WB groups (p < 0.05). In conclusion, a 5% LS supplementation could potentially enhance the feed conversion ratio and European Broiler Index (EBI) of broilers by elevating the family Lactobacillaceae and suppressing the phylum Proteobacteria's population, thus creating changed intestinal environments that may potentially favor the growth and health of the broilers.

Keywords: Laetiporus sulphureus; broilers; intestinal microbiota; metagenomics.