Improving the Forming Quality of Laser Dynamic Flexible Micropunching by Laser Pre-Shocking

Materials (Basel). 2020 Aug 19;13(17):3667. doi: 10.3390/ma13173667.

Abstract

Laser pre-shocking (LPS) was introduced into the laser dynamic flexible micropunching process to refine the grain size of a workpiece to improve the forming quality of punched parts. T2 copper foils with five different grain sizes and seven different laser power densities with and without LPS were used for the experiment. The results showed that the grains are refined and the average surface roughness Ra decreases after LPS. For copper foils annealed at 650 °C, the value of Ra decreases from 0.430 to 0.363 µm. The increase in laser energy density and grain size leads to the deterioration of the fracture surface. LPS can improve the quality of the fracture surface. Compared with punched holes without LPS, the dimensional accuracy and shape accuracy of punched holes can be improved by LPS. When grain size is close to the thickness of the copper foil, the forming quality of the punched parts becomes uncertain, owing to the difference in the orientation of the initial grains. The instability of laser dynamic flexible micropunching can be reduced by LPS. Especially, the improvement of forming quality of the punched part brought by LPS is significant for the copper foils with coarse grains.

Keywords: forming quality; grain refinement; laser dynamic flexible micropunching; laser pre-shocking.