Effect of Phosphate-Based Inhibitor on Corrosion Kinetics and Mechanism for Formation of Passive Film onto the Steel Rebar in Chloride-Containing Pore Solution

Materials (Basel). 2020 Aug 17;13(16):3642. doi: 10.3390/ma13163642.

Abstract

In the present study, different contents, i.e., 1-3% of 0.5 M ammonium phosphate mono basic (APMB), were used as corrosion inhibitor to reduce the corrosion of steel rebar. Electrochemical impedance spectroscopy (EIS) results showed that up to 24 h of exposure, polarization resistance (Rp) and passive/oxide film resistance (Ro) gradually decreased in simulated concrete pore (SCP) + 3.5 wt.% NaCl solution owing to the reduction in pH of the solution. The steel rebar exposed in 2% inhibitor containing SCP + 3.5 wt.% NaCl solution exhibited 90% inhibition efficiency after 1 h of exposure. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of thermodynamically very stable and sparingly soluble goethite (α-FeOOH), maghemite (γ-Fe2O3), and iron phosphate (FePO4) as passive/oxide film onto the steel rebar surface exposed to 2% inhibitor containing SCP + 3.5 wt.% NaCl solution.

Keywords: Raman spectroscopy; concrete pore solution; corrosion; electrochemical impedance spectroscopy; inhibitor; steel.