Ultraviolet-A Persistent Luminescence of a Bi3+-Activated LiScGeO4 Material

Inorg Chem. 2020 Sep 8;59(17):12920-12927. doi: 10.1021/acs.inorgchem.0c02007. Epub 2020 Aug 21.

Abstract

Long persistent phosphors (LPPs) with ultraviolet (UV) luminescence have great potential for application in the fields of biomedicine, environmental, and catalysis. However, it is currently limited by the design and development of remarkable UV LPPs with a suitable spectral region and an ultralong afterglow decay time. Herein, we develop a new type of Bi3+-activated LiScGeO4 LPP, which exhibits bright ultraviolet-A (UVA) persistent luminescence (PersL). Because of the existence of numerous stabilized effective traps, the as-synthesized phosphors can undergo an ultralong PersL decay time far longer than 12 h. The PersL properties, effective trap depths, distributions, and types, as well as the possible mechanism for the PersL behavior of LiScGeO4:Bi3+, are comprehensively surveyed utilizing PersL excitation spectra, PersL decay analyses, thermoluminescence experiments, and X-ray photoelectron spectroscopy. This work can cover the shortage of LPPs in the UV region and also can lay the foundation for the development of more excellent UV LPPs toward versatile novel applications.