Multielement Synergetic Effect of Boron Nitride and Multiwalled Carbon Nanotubes for the Fabrication of Novel Shape-Stabilized Phase-Change Composites with Enhanced Thermal Conductivity

ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41398-41409. doi: 10.1021/acsami.0c11002. Epub 2020 Sep 1.

Abstract

Shape-stabilized phase-change composites (SSPCCs) have been widely applied for thermal energy storage and thermal management because of their excellent properties. To further improve their thermal conductivity and thermal cycling stability, we successfully designed and synthesized a series of SSPCCs with three-dimensional (3D) thermally conductive networks by exploiting the synergistic effect between one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) hexagonal boron nitride (h-BN). The interconnected thermally conductive network composed of h-BN and multiwalled carbon nanotubes (MWCNTs) enhanced the SSPCC performance. The micromorphologies of the prepared SSPCCs revealed that well-dispersed MWCNTs, hydroxylated h-BN, and polyethylene glycol (PEG) molecular chains effectively bonded into a 3D cross-linking structure of the SSPCCs. Moreover, the chemical and crystalline structural and thermal properties and thermal cycling stability of the novel SSPCCs were systematically investigated by various characterization techniques. The presence of a 3D thermally conductive network in the as-synthesized SSPCCs evidently improved the shape stability, phase-change behavior, and thermal stability. Benefiting from the 3D nanostructural uniqueness of SSPCCs, the thermal conductivity of SSPCC-2 was up to 1.15 W m-1 K-1, which represented a significant enhancement of 239.7% compared with that of pure PEG. Meanwhile, the efficient synergistic effect of h-BN and MWCNTs remarkably enhanced the heat-transfer rate of the SSPCCs. These results demonstrate that the prepared SSPCCs have potential for applications in thermal energy storage and thermal management systems. This study opens a new avenue toward the development of SSPCCs with good comprehensive properties.

Keywords: hexagonal boron nitride; polyethylene glycol; shape-stabilized phase-change composites; thermal performance; three-dimensional network structure.