Coordinated dysregulation of cancer progression by the HER family and p21-activated kinases

Cancer Metastasis Rev. 2020 Sep;39(3):583-601. doi: 10.1007/s10555-020-09922-6. Epub 2020 Aug 21.

Abstract

Most epithelial cancer types are polygenic in nature and are driven by coordinated dysregulation of multiple regulatory pathways, genes, and protein modifications. The process of coordinated regulation of cancer promoting pathways in response to extrinsic and intrinsic signals facilitates the dysregulation of several pathways with complementary functions, contributing to the hallmarks of cancer. Dysregulation and hyperactivation of cell surface human epidermal growth factor receptors (HERs) and cytoskeleton remodeling by p21-activated kinases (PAKs) are two prominent interconnected aspects of oncogenesis. We briefly discuss the discoveries and significant advances in the area of coordinated regulation of HERs and PAKs in the development and progression of breast and other epithelial cancers. We also discuss how initial studies involving heregulin signaling via HER3-HER2 axis and HER2-overexpressing breast cancer cells not only discovered a mechanistic role of PAK1 in breast cancer pathobiology but also acted as a bridge in generating a broader cancer research interest in other PAK family members and cancer types and catalyzed establishing the role of PAKs in human cancer, at-large. In addition, growth factor stimulation of the PAK pathway also helped to recognize new facets of PAKs, connecting the PAK pathway to oncogenesis, nuclear signaling, gene expression, mitotic progression, DNA damage response, among other phenotypic responses, and shaped the field of PAK cancer research. Finally, we recount some of the current limitations of HER- and PAK-directed therapeutics in counteracting acquired therapeutic resistance and discuss how cancer's as a polygenic disease may be best targeted with a polygenic approach.

Keywords: Cancer; EGFR family; Gene expression; PAKs; Polygenic disease; Signaling.

Publication types

  • Review

MeSH terms

  • Animals
  • Breast Neoplasms / enzymology
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Disease Progression
  • ErbB Receptors / metabolism*
  • Female
  • Humans
  • Signal Transduction
  • p21-Activated Kinases / metabolism*

Substances

  • ErbB Receptors
  • p21-Activated Kinases