Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

IEEE Trans Geosci Remote Sens. 2017 Apr;55(4):2136-2143. doi: 10.1109/TGRS.2016.2637167. Epub 2017 Jan 5.

Abstract

The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of on-board calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band-dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for "near field" targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm - 870 nm) is improved by up to 1.5% for Aqua MODIS.

Keywords: MODIS; calibration; image registration; optical design.