Synthesis, characterization, and computational study of a new heteroaryl chalcone

J Mol Model. 2020 Aug 20;26(9):243. doi: 10.1007/s00894-020-04506-1.

Abstract

This work presents the synthesis of the chalcone (E)-3-(2,6-difluorophenyl)-1-(furan-2-yl)-prop-2-en-1-one molecule through the equimolar reaction between 1-(furan-2-yl)-ethenone and 2,6-difluorobenzaldehyde. The crystallographic characterization and the extensive theoretical study regarding electronic properties were obtained. The supramolecular arrangement was described by X-ray diffraction and Hirshfeld surfaces. Optimized geometrical structure was obtained by density functional theory, and the electronic study for differences between the solid and gas phases was carried out with M062-X at 6-311++G(2d,2p) basis set. Natural bond orbital, frontier molecular orbitals (HOMO-LUMO), and molecular electrostatic potential map were determined to elucidate the information related to the charge transfer in the molecule. The theoretical and experimental vibrational spectra were plotted, which included the IR intensities, the calculated and experimental vibrational frequencies, and the assigned vibrational modes for the main groups of DTP.

Keywords: Chalcone; DFT; X-ray diffraction.