Ultrasensitive DNA Immune Repertoire Sequencing Using Unique Molecular Identifiers

Clin Chem. 2020 Sep 1;66(9):1228-1237. doi: 10.1093/clinchem/hvaa159.

Abstract

Background: Immune repertoire sequencing of the T-cell receptor can identify clonotypes that have expanded as a result of antigen recognition or hematological malignancies. However, current sequencing protocols display limitations with nonuniform amplification and polymerase-induced errors during sequencing. Here, we developed a sequencing method that overcame these issues and applied it to γδ T cells, a cell type that plays a unique role in immunity, autoimmunity, homeostasis of intestine, skin, adipose tissue, and cancer biology.

Methods: The ultrasensitive immune repertoire sequencing method used PCR-introduced unique molecular identifiers. We constructed a 32-panel assay that captured the full diversity of the recombined T-cell receptor delta loci in γδ T cells. The protocol was validated on synthetic reference molecules and blood samples of healthy individuals.

Results: The 32-panel assay displayed wide dynamic range, high reproducibility, and analytical sensitivity with single-nucleotide resolution. The method corrected for sequencing-depended quantification bias and polymerase-induced errors and could be applied to both enriched and nonenriched cells. Healthy donors displayed oligoclonal expansion of γδ T cells and similar frequencies of clonotypes were detected in both enrichment and nonenriched samples.

Conclusions: Ultrasensitive immune repertoire sequencing strategy enables quantification of individual and specific clonotypes in a background that can be applied to clinical as well as basic application areas. Our approach is simple, flexible, and can easily be implemented in any molecular laboratory.

Keywords: UMI; error-free sequencing; immune repertoire; next-generation sequencing; unique molecular identifier; γδ T cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • DNA / analysis*
  • DNA / genetics
  • Genes, T-Cell Receptor delta
  • Humans
  • Intraepithelial Lymphocytes / chemistry
  • Intraepithelial Lymphocytes / classification*
  • Polymerase Chain Reaction / methods
  • Reproducibility of Results
  • Sequence Analysis, DNA / methods

Substances

  • DNA