Liquid-liquid transition and critical point in sulfur

Nature. 2020 Aug;584(7821):382-386. doi: 10.1038/s41586-020-2593-1. Epub 2020 Aug 19.

Abstract

The liquid-liquid transition (LLT), in which a single-component liquid transforms into another one via a first-order phase transition, is an intriguing phenomenon that has changed our perception of the liquid state. LLTs have been predicted from computer simulations of water1,2, silicon3, carbon dioxide4, carbon5, hydrogen6 and nitrogen7. Experimental evidence has been found mostly in supercooled (that is, metastable) liquids such as Y2O3-Al2O3 mixtures8, water9 and other molecular liquids10-12. However, the LLT in supercooled liquids often occurs simultaneously with crystallization, making it difficult to separate the two phenomena13. A liquid-liquid critical point (LLCP), similar to the gas-liquid critical point, has been predicted at the end of the LLT line that separates the low- and high-density liquids in some cases, but has not yet been experimentally observed for any materials. This putative LLCP has been invoked to explain the thermodynamic anomalies of water1. Here we report combined in situ density, X-ray diffraction and Raman scattering measurements that provide direct evidence for a first-order LLT and an LLCP in sulfur. The transformation manifests itself as a sharp density jump between the low- and high-density liquids and by distinct features in the pair distribution function. We observe a non-monotonic variation of the density jump with increasing temperature: it first increases and then decreases when moving away from the critical point. This behaviour is linked to the competing effects of density and entropy in driving the transition. The existence of a first-order LLT and a critical point in sulfur could provide insight into the anomalous behaviour of important liquids such as water.

Publication types

  • Research Support, Non-U.S. Gov't