Bipedal microwalkers actuated by oscillating magnetic fields

Soft Matter. 2020 Sep 14;16(34):7927-7934. doi: 10.1039/d0sm01228a. Epub 2020 Aug 19.

Abstract

Microrobots have attracted considerable attention due to their immense potential for biomedical and engineering applications in recent years. Inspired by human walks, a bipedal microwalker capable of standing and walking like humans regulated by external weak magnetic fields was reported in this paper. The walker has a submillimeter size and a simple arrowhead shape. Its standing and walking locomotion is controlled by external oscillating magnetic fields generated by orthogonal electromagnetic coil pairs. The walking speeds of the microwalker are controlled using magnetic fields with varying parameters. The walking speeds on a glass substrate immersed in water could reach up to 2.2 mm s-1. Designed walking paths of the microwalker on a horizontal substrate are also demonstrated. Besides walking on horizontal flat surfaces, the microwalker can climb up slopes and walk freely in circular microtubes. The microwalker is of interest in fundamental robotic gait research and for micromanipulation applications.