Facile Synthesis of Hydrophobic Metal-Organic Gels for Volatile Organic Compound Capture

ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41359-41367. doi: 10.1021/acsami.0c10818. Epub 2020 Sep 1.

Abstract

Exploring a synthesis method for preparing hydrophobic metal-organic gels (MOGs) is highly desirable for air purification. Here, we present a rapid heating-up synthetic route to hydrophobic MOG denoted CAU-3(gel) with hierarchical micro/mesoporosity. CAU-3(gel), which features water and thermal stability, high surface area, and hydrophobicity, exhibits excellent performance for the capture of three representative volatile organic compounds (hexanal, toluene, and p-xylene), higher than BPL activated carbon, zeolite 13X, and some representative metal-organic frameworks including ZIF-8, HKUST-1, MIL-101(Cr), and UiO-66 under wet conditions. Furthermore, CAU-3(gel) could be easily coated on a nonwoven fabric by a simple dip-coating method without using any binder, which exhibits outstanding hexanal removal performance and regenerability at low temperature. Grand canonical Monte Carlo simulations show that hexanal preferentially enters relatively small tetrahedral cages and occupies two adsorption sites at low pressure and then a new site appears in octahedral cages with increasing pressure.

Keywords: VOCs; adsorption; hydrophobic; low-temperature regeneration; metal organic gel.