Salt coatings functionalize inert membranes into high-performing filters against infectious respiratory diseases

Sci Rep. 2020 Aug 17;10(1):13875. doi: 10.1038/s41598-020-70623-9.

Abstract

Respiratory protection is key in infection prevention of airborne diseases, as highlighted by the COVID-19 pandemic for instance. Conventional technologies have several drawbacks (i.e., cross-infection risk, filtration efficiency improvements limited by difficulty in breathing, and no safe reusability), which have yet to be addressed in a single device. Here, we report the development of a filter overcoming the major technical challenges of respiratory protective devices. Large-pore membranes, offering high breathability but low bacteria capture, were functionalized to have a uniform salt layer on the fibers. The salt-functionalized membranes achieved high filtration efficiency as opposed to the bare membrane, with differences of up to 48%, while maintaining high breathability (> 60% increase compared to commercial surgical masks even for the thickest salt filters tested). The salt-functionalized filters quickly killed Gram-positive and Gram-negative bacteria aerosols in vitro, with CFU reductions observed as early as within 5 min, and in vivo by causing structural damage due to salt recrystallization. The salt coatings retained the pathogen inactivation capability at harsh environmental conditions (37 °C and a relative humidity of 70%, 80% and 90%). Combination of these properties in one filter will lead to the production of an effective device, comprehensibly mitigating infection transmission globally.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerosols
  • Air Filters / microbiology*
  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology
  • Betacoronavirus*
  • COVID-19
  • Coronavirus Infections / prevention & control*
  • Coronavirus Infections / transmission
  • Coronavirus Infections / virology
  • Crystallization
  • Gram-Negative Bacteria / drug effects
  • Gram-Positive Bacteria / drug effects
  • Hot Temperature
  • Humans
  • Humidity
  • Masks / microbiology*
  • Membranes, Artificial*
  • Pandemics / prevention & control*
  • Pneumonia, Viral / prevention & control*
  • Pneumonia, Viral / transmission
  • Pneumonia, Viral / virology
  • Respiratory Protective Devices / microbiology*
  • SARS-CoV-2
  • Sodium Chloride / chemistry*
  • Sodium Chloride / pharmacology

Substances

  • Aerosols
  • Anti-Bacterial Agents
  • Membranes, Artificial
  • Sodium Chloride