Mask Gradient Response-Based Threshold Segmentation for Surface Defect Detection of Milled Aluminum Ingot

Sensors (Basel). 2020 Aug 12;20(16):4519. doi: 10.3390/s20164519.

Abstract

The surface quality of aluminum ingot is crucial for subsequent products, so it is necessary to adaptively detect different types of defects in milled aluminum ingots surfaces. In order to quickly apply the calculations to a real production line, a novel two-stage detection approach is proposed. Firstly, we proposed a novel mask gradient response-based threshold segmentation (MGRTS) in which the mask gradient response is the gradient map after the strong gradient has been eliminated by the binary mask, so that the various defects can be effectively extracted from the mask gradient response map by iterative threshold segmentation. In the region of interest (ROI) extraction, we combine the MGRTS and the Difference of Gaussian (DoG) to effectively improve the detection rate. In the aspect of the defect classification, we train the inception-v3 network with a data augmentation technology and the focal loss in order to overcome the class imbalance problem and improve the classification accuracy. The comparative study shows that the proposed method is efficient and robust for detecting various defects on an aluminum ingot surface with complex milling grain. In addition, it has been applied to the actual production line of an aluminum ingot milling machine, which satisfies the requirement of accuracy and real time very well.

Keywords: Difference of Gaussian; aluminum ingot; inception-v3; mask gradient response; surface inspection.