Catalytic ozonation of 2, 2'-methylenebis (4-methyl-6-tert-butylphenol) over nano-Fe3O4@cow dung ash composites: Optimization, toxicity, and degradation mechanisms

Environ Pollut. 2020 Oct;265(Pt B):114597. doi: 10.1016/j.envpol.2020.114597. Epub 2020 Apr 22.

Abstract

Composite magnetic oxide at cow dung ash, nano-Fe3O4@cow dung ash (nano-Fe3O4@CDA), was used as catalytic material for the degradation of 2, 2'-methylenebis (4-methyl-6-tert-butylphenol) (AO 2246) in real biologically pretreated landfill leachate. The Fe3O4@CDA composite exhibited catalytic ozonation activity and allowed material separation and magnetic recovery. The effects of several operating parameters including O3 concentration, catalyst dosage, temperature and scavengers were evaluated in parallel. Over 70% of AO 2246 were removed by the nano-Fe3O4@CDA/O3 system under optimum conditions within 120min reaction time. The EPR, GC-MS and free-radical quenching experiments expatiated the mechanism of this degradation process. It was confirmed that the AO 2246 was degraded efficiently in this catalytic micro-ozonation process, Additionally, GC-MS analysis state clearly that the 3,5-bis(1,1-dimethylethyl)phenol, 4-(1,5-dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one, ethanone, 1-(1,4-dimethyl-3-cyclohexen-1-yl)-, 5-tert-butyl-6-3, 5-diene-2-one, 2-hydroxyhexanoic acid, 2-propenoic acid 1,1-dimethylethyl ester, butanoic acid, 2-methyl-, methyl ester and propanoic acid, 2, 2-dimethyl- were the dominant oxidation products (OPs) during the degradation of the AO 2246. The EPR results showed that the catalytic ozonation over Fe3O4@CDA led to produce more hydroxyl radicals, which were in favor of AO 2246 degradation. The toxicity evolution was also performed through a QSAR analysis calculated by the ECOSAR program which further demonstrated the different responses toward the AO 2246 and its OPs.

Keywords: Catalytic micro-ozonation; Fe(3)O(4)@CDA; Oxidation products; Synthetic phenolic antioxidants; Toxicity evolution.

MeSH terms

  • Animals
  • Catalysis
  • Cattle
  • Female
  • Hydroxyl Radical
  • Ozone*
  • Phenol
  • Water Pollutants, Chemical / analysis*

Substances

  • Water Pollutants, Chemical
  • Hydroxyl Radical
  • Phenol
  • Ozone