Abundance and characteristics of microfibers detected in sediment trap material from the deep subtropical North Atlantic Ocean

Sci Total Environ. 2020 Oct 10:738:140354. doi: 10.1016/j.scitotenv.2020.140354. Epub 2020 Jun 20.

Abstract

Plastics and microplastics increasingly gain importance due to their perils and wide distribution in the marine environment. Microfibers account for the largest percentage of anthropogenic-induced microparticles, which inter alia, consist of plastic, and are found in deep-sea sediments. However, the sinking of fibers from the surface through the water column to the seafloor is still poorly understood. The present study investigates microfibers extracted from sediment trap samples, which were deployed in the North Atlantic Subtropical Gyre (NASG). The average result of eleven analyzed samples showed 913 microfibers per gram of collected particle flux material, with a predominant fiber length shorter than 1 mm (75.6%) and a distribution maximum between 0.2 and 0.4 mm. Further, the average number of microfibers found in this study was used to derive microfiber fluxes for the NASG based on the deployment time of the sediment trap. Extrapolating the computed flux of 94 microfibers m-2 day-1 to the entire NASG area would correspond to a total microfiber mass flux of 9800 t a-1 or 73 × 1013 microfibers a-1 of sinking microfibers through the water column. These findings offer an extended application of sediment traps to monitor microfiber fluxes, which reveals the opportunity to investigate the mechanism driving sinking of microfibers and microplastics into the deep open ocean.

Keywords: Deep ocean; Microfiber; Microfiber flux; North Atlantic.