Atomically Thin Hexagonal Boron Nitride and Its Heterostructures

Adv Mater. 2021 Feb;33(6):e2000769. doi: 10.1002/adma.202000769. Epub 2020 Aug 16.

Abstract

Atomically thin hexagonal boron nitride (h-BN) is an emerging star of 2D materials. It is taken as an optimal substrate for other 2D-material-based devices owing to its atomical flatness, absence of dangling bonds, and excellent stability. Specifically, h-BN is found to be a natural hyperbolic material in the mid-infrared range, as well as a piezoelectric material. All the unique properties are beneficial for novel applications in optoelectronics and electronics. Currently, most of these applications are merely based on exfoliated h-BN flakes at their proof-of-concept stages. Chemical vapor deposition (CVD) is considered as the most promising approach for producing large-scale, high-quality, atomically thin h-BN films and heterostructures. Herein, CVD synthesis of atomically thin h-BN is the focus. Also, the growth kinetics are systematically investigated to point out general strategies for controllable and scalable preparation of single-crystal h-BN film. Meanwhile, epitaxial growth of 2D materials onto h-BN and at its edge to construct heterostructures is summarized, emphasizing that the specific orientation of constituent parts in heterostructures can introduce novel properties. Finally, recent applications of atomically thin h-BN and its heterostructures in optoelectronics and electronics are summarized.

Keywords: chemical vapor deposition; electronics; heterostructures; hexagonal boron nitride; optoelectronics.

Publication types

  • Review