Birth Weight and Susceptibility to Chronic Kidney Disease

Saudi J Kidney Dis Transpl. 2020 Jul-Aug;31(4):717-726. doi: 10.4103/1319-2442.292305.

Abstract

The worldwide prevalence of noncommunicable diseases (NCDs) is projected to increase substantially over the next few decades. Chronic kidney disease (CKD) is a key determinant of poor health outcomes for major NCD. Genetic predisposition and environmental exposures are contributory factors, but increasingly, it is being recognized that fetal development is also an important modulator of the NCD risk. Low birth weight (LBW) and CKD affect more disadvantaged populations and ethnic minorities and, therefore, causes a disproportionate burden on the poor. Human nephron number is highly variable and may range from under half a million to almost over two million. Significant variability is already present at birth, highlighting the importance of early nephrogenesis. Nearly 60% of nephrons are developed in the third-trimester of pregnancy. Nephron numbers increase in proportion to birth weight and gestational age. This wide-variability probably contributes to individual susceptibility to develop CKD where individuals with nephron numbers on the lower side of the spectrum are those at higher risk of developing kidney dysfunction at higher rate and progress more toward end-stage CKD. This article aims at discussing LBW and the susceptibility to CKD. Furthermore, in postnatal environment, the weight gain or change at adult life increases the metabolic demand and determines the phenotypic expression of disease along with the spectrum of nephron number. Hence, a cycle of hyperfiltration mechanism of these nephrons leads to proteinuria, glomerulo- sclerosis, and progressive development of larger glomeruli, a greater risk of proteinuria and progressive CKD. Therefore, LBW offspring are at risk of developing CKD (defined as albuminuria, a reduced glomerular filtration rate, or renal failure) in later life. Furthermore, the impact of prenatal programming is expected to be compounded with age, and the association of LBW with the risk of CKD seen in younger adults may become greater with age. It would be prudent, to adopt policies of intensified life-long surveillance of LBW people, anticipating this risk.

Publication types

  • Review

MeSH terms

  • Adult
  • Birth Weight / physiology*
  • Disease Susceptibility
  • Female
  • Gestational Age
  • Humans
  • Infant, Newborn
  • Kidney* / cytology
  • Kidney* / embryology
  • Nephrons / cytology
  • Oman
  • Pregnancy
  • Renal Insufficiency, Chronic*