Diffuse Intrinsic Pontine Glioma Cells Are Vulnerable to Mitotic Abnormalities Associated with BMI-1 Modulation

Mol Cancer Res. 2020 Nov;18(11):1711-1723. doi: 10.1158/1541-7786.MCR-20-0099. Epub 2020 Aug 14.

Abstract

Diffuse intrinsic pontine glioma (DIPG) is a poor-prognosis pediatric brain tumor with a median survival of less than 1 year. No effective therapy is currently available, and no therapeutic advances have been made in several decades. We have previously identified BMI-1 as a potential therapeutic target in DIPG and have shown that BMI-1 is highly expressed in DIPG tumors regardless of histone 3 subtype. In the present study, we show that the modulation of BMI-1 leads to DNA damage, M phase cell-cycle arrest, chromosome scattering, and cell death. Interestingly, EZH2 inhibition did not alter these effects. Furthermore, modulation of BMI-1 sensitizes DIPG patient-derived stem-like cells to ionizing radiation (IR). Treatment of DIPG stem-like cells with PTC596, a BMI-1 modulator, and IR impairs the kinetics of DNA damage response (DDR). Both DDR foci formation and resolution were delayed, resulting in further reduction in cell viability compared with either treatment alone. In vivo, treatment of mice bearing DIPG xenografts with PTC596 leads to decreased tumor volume and growth kinetics, increased intratumoral apoptosis, and sustained animal survival benefit. Gene expression analysis indicates that BMI-1 expression correlates positively with DIPG stemness and BMI-1 signature. At the single-cell level, the analysis reveals that BMI-1 pathway is upregulated in undifferentiated cells and positively correlates with stemness in DIPG tumors. IMPLICATIONS: Together, our findings indicate that BMI-1 modulation is associated with mitotic abnormalities, impaired DDR, and cell death, supporting the combination of BMI-1 modulation and radiation as a promising novel therapy for children with DIPG.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diffuse Intrinsic Pontine Glioma / genetics*
  • Disease Models, Animal
  • Female
  • Humans
  • Mice
  • Mitosis
  • Polycomb Repressive Complex 1 / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Xenograft Model Antitumor Assays

Substances

  • Bmi1 protein, mouse
  • Proto-Oncogene Proteins
  • Polycomb Repressive Complex 1