Synthesis, characterization and in vitro biological evaluation of novel organotin(IV) compounds with derivatives of 2-(5-arylidene-2,4-dioxothiazolidin-3-yl)propanoic acid

J Inorg Biochem. 2020 Oct:211:111207. doi: 10.1016/j.jinorgbio.2020.111207. Epub 2020 Jul 26.

Abstract

Two novel triphenyltin(IV) compounds, [Ph3SnL1] (L1 = 2-(5-(4-fluorobenzylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (1)) and [Ph3SnL2] (L2 = 2-(5-(5-methyl-2-furfurylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (2)) were synthesized and characterized by FT-IR, (1H and 13C) NMR spectroscopy, mass spectrometry, and elemental microanalysis. The in vitro anticancer activity of the synthesized organotin(IV) compounds was determined against four tumor cell lines: PC-3 (prostate), HT-29 (colon), MCF-7 (breast), and HepG2 (hepatic) using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. The IC50 values are found to be in the range from 0.11 to 0.50 μM. Compound 1 exhibits the highest activity toward PC-3 cells (IC50 = 0.115 ± 0.009 μM; CV assay). The tin and platinum uptake in PC-3 cells showed a threefold lower uptake of tin in comparison to platinum (as cisplatin). Together with its higher activity this indicates a much higher cell inhibition potential of the tin compounds (calculated to ca. 50 to 100 times). Morphological analysis suggested that the compounds induce apoptosis in PC-3 cells, and flow cytometry analysis revealed that 1 and 2 induce autophagy as well as NO (nitric oxide) production.

Keywords: Apoptosis; Autophagy; In vitro; NO; Prostate cancer; Tin(IV).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Drug Screening Assays, Antitumor / methods*
  • Humans
  • In Vitro Techniques
  • Neoplasms / drug therapy*
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Nitric Oxide / metabolism
  • Organotin Compounds / chemical synthesis*
  • Organotin Compounds / chemistry
  • Organotin Compounds / pharmacology*
  • Propionates / chemistry*
  • Spectroscopy, Fourier Transform Infrared / methods
  • Thiazolidines / chemistry

Substances

  • Antineoplastic Agents
  • Organotin Compounds
  • Propionates
  • Thiazolidines
  • Nitric Oxide