CircTADA2A suppresses the progression of colorectal cancer via miR-374a-3p/KLF14 axis

J Exp Clin Cancer Res. 2020 Aug 15;39(1):160. doi: 10.1186/s13046-020-01642-7.

Abstract

Background: Colorectal cancer (CRC) is one of the causes of cancer-related death worldwide. The aim of our study was to disclose the expression pattern and underlying molecular mechanism of circular RNA TADA2A (circTADA2A) in CRC.

Methods: The levels of circTADA2A, transcriptional adaptor 2A (TADA2A), microRNA-374a-3p (miR-374a-3p) and Kruppel like factor 14 (KLF14) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Xenograft tumor assay was used to uncover the function of circTADA2A in vivo. The miRNA targets of circTADA2A were searched using circbank and starbase softwares, while DIANA TOOL was used to explore miR-374a-3p-mRNA interactions. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to validate the target relationship of circTADA2A/miR-374a-3p/KLF14 axis. Cell cycle and apoptosis were analyzed by flow cytometry. The glycolysis of CRC cells was determined by Seahorse XFe 96 Extracellular Flux Analyzer, Glucose Uptake Colorimetric Assay kit, Lactate Assay Kit II and ATP Colorimetric Assay kit. KLF14 protein level was measured by Western blot assay.

Results: CircTADA2A was abnormally down-regulated in CRC tissues and cell lines. CircTADA2A overexpression impeded CRC tumor growth in vivo. MiR-374a-3p was verified as a target of circTADA2A in CRC cells, and circTADA2A inhibited the malignant potential of CRC cells through targeting miR-374a-3p. MiR-374a-3p interacted with KLF14 messenger RNA (mRNA), and miR-374a-3p deteriorated CRC through down-regulating KLF14. CircTADA2A enhanced the abundance of KLF14 through targeting miR-374a-3p in CRC cells.

Conclusion: CircTADA2A functioned as a tumor suppressor in CRC to inhibit the glycolysis and cell cycle and potentiate the apoptosis of CRC cells via miR-374a-3p/KLF14 axis.

Keywords: Apoptosis; Cell cycle; Colorectal cancer; Glycolysis; KLF14; circTADA2A; miR-374a-3p.

MeSH terms

  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Cell Movement
  • Cell Proliferation
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology*
  • DNA-Binding Proteins / genetics*
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Kruppel-Like Transcription Factors / genetics
  • Kruppel-Like Transcription Factors / metabolism*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics*
  • Middle Aged
  • Neoplasm Invasiveness
  • Prognosis
  • RNA, Circular / genetics*
  • Transcription Factors / genetics*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Biomarkers, Tumor
  • DNA-Binding Proteins
  • KLF14 protein, human
  • Kruppel-Like Transcription Factors
  • MIRN374 microRNA 374, human
  • MicroRNAs
  • RNA, Circular
  • TADA2A protein, human
  • Transcription Factors