Indium-Based Metal-Organic Framework for High-Performance Electroreduction of CO2 to Formate

Inorg Chem. 2020 Aug 17;59(16):11298-11304. doi: 10.1021/acs.inorgchem.0c00769. Epub 2020 Jul 29.

Abstract

It is urgent to find a catalyst with high selectivity and efficiency for the reduction of CO2 by renewable electric energy, which is the important means to reduce the greenhouse effect. In this work, we report that the metal-organic framework (MOF) indium-based 1,4-benzenedicarboxylate (In-BDC) catalyzes CO2 to formate with a Faradaic efficiency (FEHCOO-) of more than 80% in a wide voltage range between -0.419 and -0.769 V (vs. reversible hydrogen electrode, RHE). In-BDC performs at a maximum FEHCOO- of 88% at -0.669 V (vs. RHE) and a turnover frequency of up to 4798 h-1 at -1.069 V (vs. RHE). The long-term durability of 21 h and reusability of the electrocatalyst are clearly demonstrated. It opens up a new opportunity to utilize MOF with novel metal motifs for the efficient electroreduction of CO2.