HIV-Captured DCs Regulate T Cell Migration and Cell-Cell Contact Dynamics to Enhance Viral Spread

iScience. 2020 Aug 21;23(8):101427. doi: 10.1016/j.isci.2020.101427. Epub 2020 Aug 1.

Abstract

Trafficking of cell-associated HIV-1 from the genital mucosa to lymphoid organs represents a critical first step toward systemic infection. Mature DCs capture and transmit HIV-1 to T cells, but insights into DC-to-T cell viral spread dynamics within a 3-dimensional environment is lacking. Using live-cell imaging, we show that mature DCs rapidly compartmentalize HIV-1 within surface-accessible invaginations near the uropod. HIV-1 capture did not interfere with DC migration toward lymph node homing chemo-attractants and their ability to enter lymphatic vessels. However, HIV-captured DCs engaged in prolonged contacts with autologous CD4+ T cells, which led to high T cell infection. Interestingly, we show that surface bound, virion-associated Env induced signal transduction in motile T cells that facilitated prolonged DC:T cell interactions, partially through high-affinity LFA-1 expression. Together, we describe a mechanism by which surface bound HIV-1 particles function as signaling receptors that regulate T cell motility, cell-cell contact dynamics, and productive infection.

Keywords: Immunology; Virology.